Modelling Radionuclide Activity in the Irish Sea

Julian Clifton⁽¹⁾, Paul McDonald⁽²⁾, Andrew Plater⁽³⁾ and Frank Oldfield⁽⁴⁾

- ⁽¹⁾ Department of Geography, University of Portsmouth PO1 3HE United Kingdom e-mail: julian.clifton@port.ac.uk
- ⁽²⁾ Westlakes Scientific Consulting Ltd., Cumbria CA24 3JZ United Kingdom e-mail: pmcd@westlakes.ac.uk
- ⁽³⁾ Department of Geography, University of Liverpool L69 3BX United Kingdom e-mail: gg07@liv.ac.uk
- ⁽⁴⁾ Past Global Changes Project, CH-3011 Bern, Switzerland e-mail: pages@ubeclu.unibe.ch

<u>Abstract</u>

The relationship between Sellafield-derived radionuclide activity, particle size distribution and sediment composition is examined in saltmarshes and mudflats from the eastern Irish Sea. The particle size dependency of ²⁴¹Am and ¹³⁷Cs is utilised to identify a preferred grain size proxy for radionuclide monitoring purposes. Based upon these relationships, a predictive model is developed which will facilitate the identification of spatial and temporal trends in radionuclide activity in these environments.