O82. SEAGRASS RESTORATION: AN UPDATE FROM TRANG PROVINCE, SOUTHWESTERN THAILAND

Prasert Tongnunui1, Woraporn Tarangkoon1, Parichat Hukiew1, Patcharee Kaeoprakan1, Masahiro Horinouchi2, Natthita Rojchanaprasart1, Wanwisa Ponpai1

1Rajamangala University of Technology Srivijaya, Thailand, 2Shimane University, Japan

prasert65@hotmail.com

Natural disasters may adversely affect coastal resources potentially leading to coastal habitat restorations that incorporate stakeholders and the general public. Appropriate methodologies for habitat restoration are developed to ensure the outcomes of this project. Currently, seagrass bed restoration by means of asexual and sexual propagation techniques have been used worldwide. However, the experience of seagrass (\textit{Enhalus acoroides}) habitat restoration in Trang Province noted that to accomplish this project’s strategies involved the application of restoration techniques along with public and stakeholder participation. The application of asexual propagation, specifically the collection of single shoots from donor seagrasses and subsequent transplantation, is a convenient tool. However, from this project results, this process still has conceptual problems as from the large numbers of single shoots collected from donor seagrasses, the survival rate was relatively low. Furthermore, this process was complicated by conflicting interests between local communities near to the donor site and the project’s organizers. In order to reduce said conflicts, other techniques to balance stakeholder interests were instigated by this project, namely the development of both asexual and sexual propagation techniques. This project initiated a sexual propagation technique by the collection of wild seeds of \textit{Enhalus acoroides} that were subsequently grown in the laboratory before natural habitat transplantation. This project results showed that seeds can be grown rapidly and can be cultured in large numbers. However, this development technique has a limit on rearing time because seedlings were found to be in decline after the third month of the experiment.